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Abstract

Addressed are four key issues regarding concrete instruction: What is concrete? What
is a worthwhile concrete experience? How can concrete experiences be used effec-
tively in early childhood mathematics instruction? Is there evidence such experiences
work? I argue that concrete experiences are those that build on what is familiar to a
child and can involve objects, verbal analogies, or virtual images. The use of manip-
ulatives or computer games, for instance, does not in itself guarantee an educational
experience. Such experiences are worthwhile if they target and further learning
(e.g., help children extend their informal knowledge or use their informal knowledge
to understand and learn formal knowledge). A crucial guideline for the effective
use of concrete experience is Dewey’s principle of interaction—external factors
(e.g., instructional activities) need to mesh with internal factors (readiness, interest).
Cognitive views of concrete materials, such as the cognitive alignment perspective
and dual-representation hypothesis, provide useful guidance about external factors
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but do not adequately take into account internal factors and their interaction with
external factors. Research on the effectiveness of concrete experience is inconclusive
because it frequently overlooks internal factors.

Piaget’s (1936) stages of development helped popularize the use of concrete

experiences and manipulatives in early childhood education. If young chil-

dren were capable of only concrete thinking, then it made sense to focus on

“real math” (everyday experiences or objects), not symbolic mathematics

that required abstract thinking.Manipulatives—objects purposely structured

to more transparently embody a mathematical idea (e.g., relation or proce-

dure) than real objects—were seen as useful tool for introducing mathemat-

ics in a developmentally appropriate manner (Mix, 2010). Although young

children are now generally considered more capable of abstract thinking and

concepts, manipulatives remain a mainstay of early childhood and elemen-

tary mathematics education (McNeil, Uttal, Jarvin, & Sternberg, 2009). This

chapter addresses four questions: What is concrete? What is a worthwhile

concrete experience? How can concrete experiences be used effectively

in early childhood mathematics instruction? Is there empirical evidence that

such experiences work?

1. WHAT IS CONCRETE?

Theorists have proposed that mathematical thinking progresses from

concrete to abstract along basically two different dimensions. One dimen-

sion can broadly be characterized as moving from perceptual-motor actions

to mental actions. Bruner (1966), for instance, proposed that development

involved adding new modes of thinking to previous capabilities. Young

children can represent knowledge in terms of motor actions (enactive

phase). More advanced children add the capability of representing knowl-

edge as mental pictures involving key characteristics only (iconic phase).

In time, children represent ideas using words or written symbols that do

not resemble the idea (symbolic phase). Steffe and Cobb (1988) proposed

that mathematical thinking moves from a dependence on representations

of physical objects or movements triggered only by perceptual input to

a reliance on mental objects or actions (concepts evoked independently

of perceptions). The educational implication of such perceptual-motor

to mental action views is that instruction should start with concrete
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experiences that involve physically manipulating objects (e.g., create

“muscle memory”).

An alternative way of conceptualizing the concrete-to-abstract

progression is from specific to general thinking. For instance, Resnick

(1992) conceptualized concrete-to-abstract development as moving from

local (e.g., context- or object-specific) concepts to general concepts

(e.g., broad generalizations applied or regardless of context). Put differently,

whereas concrete knowledge, which is based on personnel experience, typ-

ically can be applied to familiar situations, abstract knowledge, which is

based on generalizations, is applicable to unfamiliar problems, as well as

familiar situations (Bisanz, Watchorn, Piatt, & Sherman, 2009; Prather &

Alibali, 2009). From this perspective, concrete experiences are those that

build on young children’s existing informal and familiar knowledge gleaned

largely from meaningful everyday experiences. Abstract is the formal sym-

bolic knowledge that is general and applicable even beyond personally

meaningful contexts.

Each of these perspectives of concrete-to-abstract development seems to

apply to particular aspects or levels of development. That is, in some cases,

physically acting on objects or physical movement may be needed to pro-

mote more advanced thinking (Mix, 2010). In other cases, the particular

mode for prompting reflection, insight, and generalization—whether it

be physical object, virtual image, verbal analogy, or formal (written)

symbols—may be unimportant as long as the context can be related to famil-

iar knowledge. Consider the development of early addition.

• Level 1. Initially, children may need to literally see, for example, one

item added to two tomake three items to construct a basic understanding

of composition or addition. Once such a basic understanding of addition

is constructed, children may look for additional examples such as

decomposing ••• into •• and • or noticing that two objects and two more

make four (Baroody & Rosu, 2006).

• Level 2. About 2.5 years of age, children can solve nonverbal addition

(e.g., two items placed on a mat and then hidden and one more item

placed next to the mat and then moved under the mat) using a mental

representation involving, perhaps, a mental or iconic image

(Huttenlocher, Jordan, & Levine, 1994).

• Level 3. Several years later, children solve equivalent word problems—

symbolic problems in a verbal format set in a familiar context (Jordan,

Hanich, & Uberti, 2003).
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• Level 4. Later yet, children solve equivalent formal symbolic problems in

a verbal format (“How much is two and one”; Jordan et al., 2003) or a

written format (e.g., 2+1) without a context.a

Children at Levels 1 and 2 could be considered as having sensory-concrete

knowledge and in need of sensory input to make sense of addition or solve

for the sum (Clements, 1999; Sarama & Clements, 2009a). Level 3 children,

who can solve word problems but not symbolic problems, would have inte-

grated-concrete knowledge in they can relate (assimilate) the symbolic language

of a word problem to familiar knowledge. Level 4 children are operating at

the integrated-concrete knowledge level if they must relate the formal

expression 2+1 to familiar knowledge to make sense of the problem and

devise or select a strategy for solving it. Level 4 children who do not have

to relate the symbolism to a meaningful context to do so are operating at an

entirely symbolic level and as having symbolic knowledge.

The distinction between sensory-concrete and integrated-concrete

knowledge is important because “concrete” is often equated exclusively

with physical objects or movements. Consistent with the perceptual-motor

to mental actions perspective, physically real materials or experiences may be

necessary for novice learners or developmentally less advanced children—

especially presymbolic or prelanguage infants and toddlers. However, con-

sistent with specific to general perspective, the same may not true of devel-

opmentally more advanced children. For such children, an interpretation of

concrete experiences would not necessarily exclude using verbal analogies,

pictures/diagrams, or virtual-based activities as a basis for instruction, if it

built on a child’s existing knowledge (Baroody, 1989; Clements &

McMillen, 1996). There is substantial evidence that children’s familiar infor-

mal knowledge (including verbal counting-based representations) plays a

key role in understanding and learning formal systematic knowledge

a DougClements (Personal Communication, 1/5/2017) indicated, “We get children to solve verbal (but

still abstract) ‘two and onemore’ problems the same time as word problems.” According to the specific-

to-general hypothesis, the order in which the word problems (WP) and verbal symbolic problems

(VSP; e.g., “two and one more”) are presented should matter. Specifically, presenting WP should

induce better performance on VSP than in VSP-first condition, because the relatively sterile VSP con-

text could be related to familiar and meaningful situations evoked by theWP (i.e., the previously intro-

duced meaningful contexts would give meaning to relatively abstract statements such as “Howmuch is

two and one more?”). Moreover, the difference would be particularly pronounced if VSP were even

more sterile as those used by Jordan and her colleagues (e.g., “Howmuch is two and one?”). That is, the

presence or absence of the term “more” may be important because its presence may better connect a

VSP with children’s existing informal change add-to understanding of addition (e.g., an initial collec-

tion of two is made larger by one more item). Clearly, though, these two hypotheses need to be empir-

ically tested.
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(Ginsburg, 1977; Ginsburg, Klein, & Starkey, 1998). Verbal analogies—

relating unfamiliar symbols to familiar experiences—can be invaluable in

understanding formal symbols (e.g., relating the minus sign to “taking

away,” relating the idea of angle to “the amount of turn,” or introducing

fractions such as 2/3 in terms of the familiar experience of fair sharing:

two pizzas shared fairly among three children; Baroody & Coslick, 1998).

Diagrams can be useful in distinguishing types of addition and subtraction

and choosing an appropriate strategy (Jitendra et al., 2013). Young children

clearly benefit from, for example, the careful use of virtual or computer-

based instruction (Clements & Nastasi, 1993; Clements & Sarama, 2003,

2004, 2012). Indeed, Sarama and Clements (2009a) detail seven ways virtual

manipulatives afford greater integrated-concrete learning than do physical

manipulatives.

However the concrete-to-abstract continuum is conceptualized, the evi-

dence does not support the view that children’s thinking is concrete across

mathematical domains and adults’ thinking is abstract (McNeil et al., 2009).

A child’s thinking may be relatively abstract in one area such as cardinal

numbers (numbers that represent the total of a collection) but relatively con-

crete in another such as subtraction or the composition of shapes.b Indeed, a

3-year old may have a relatively abstract understanding of (the cardinal num-

ber) “two” but a relatively limited and inexact understanding of “ten.” This

perspective underscores the need for educators to understand a child’s devel-

opmental level within a particular domain when considering whether an

instructional activity is sufficiently concrete. This point is underscored in

the next two sections of this chapter.

2. WHAT IS A WORTHWHILE CONCRETE ACTIVITY?

In his analysis of why Progressive Education was unsuccessful, Dewey

(1963) concluded that instruction should not consist of a conglomeration of

activities without clear educational purposes. For example, concrete expe-

riences such as everyday calendar activities are often used without a clear,

justifiable goal, or good effect (Clements, Baroody, & Sarama, 2013;

National Research Council, 2009). Similarly, using the same M&M activity

to teach probability for four consecutive grade levels without modification

b The flipside is that even adults can frequently benefit from having unfamiliar aspects of formal math-

ematics related to their familiar knowledge and can benefit from reflecting on manipulative models

(McNeil et al., 2009).

47Using Concrete Experiences



or extension is not likely to result in new learning. Manipulatives used in

isolation (e.g., left in a learning center without guidance or feedback) are

not likely to achieve worthwhile instructional goals (Uttal, 2003).

Dewey (1963) argued that teachers must avoid miseducative experiences

(activities for the sake of activity and that may actually impede

development) and strive to provide educative experiences (experiences that

lead to worthwhile learning or a basis for later learning; see also Sophian,

2004). Concrete experiences and manipulative use need to be guided by

a plan for achieving useful instructional goals. According to Dewey,

educative experiences result “from an interaction of external factors, such

as the nature of the subject matter and teaching practices, and internal fac-

tors, such as a child’s [developmental readiness] and interests” (Baroody,

1987, p. 37). Teachers, then, must ensure that external and internal

factors mesh.

Piaget’s principles of meaningful learning illustrate how the external fac-

tor of introducing formal symbols needs to fit the internal factor of a child’s

developmental level. His principle of assimilation specifies that new infor-

mation is understood and interpreted in terms of existing knowledge. For

example, introducing the formal symbolism for subtraction by relating

5–3¼ ? to “What is five minus three?” may not make sense to children

who do not know the meaning of the formal term “minus.” As a result, even

though they might be able to solve an analogous word problem, students

may be unresponsive, simply guess, or assimilate the formal expression to

what do they understand (i.e., assume it represents addition and answer

“8”). In contrast, relating 5–3¼ ? to their informal knowledge of subtrac-

tion (e.g., “Five candies take away three candies leaves what?”) can enable

them to understand and learn that the minus sign means subtract. Piaget’s

moderate novelty principle prescribes that information that is neither too

familiar nor unfamiliar will pique interest and engagement. For instance,

for a child who can already count to thirty-one and read the written numbers

to 31, the task of counting up to today’s date on a calendar can be readily

assimilated but is uninspiring. In contrast, the question “How many tens

does 31 show?” asked of the same child without grouping and place-value

knowledge cannot be assimilated to prior knowledge and is, thus, incompre-

hensible and uninteresting. However, a novel compare-type problem that

builds on the child’s familiar knowledge (e.g., “If today is December 5

and our field trip is December 11, how many more days until our trip?”)

might make sense and spark interest in solving it. Dewey’s principle of inter-

action is perhaps even more closely akin to Vygotsky’s (1962) zone of
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proximal development: The domain-specific—or even activity-specific—

competence a child can exhibit with careful and minimal assistance.

Hypothetical learning trajectories (HTLs) can serve as an invaluable tool

for implementing Dewey’s (1963) principle of interaction—for ensuring

external factors (e.g., instructional goals and activities) effectively interact

with the internal factor of a child’s developmental level. HLTs—which

include theoretically and empirically based developmental levels or

steps—(a) define goals for meaningful instruction; (b) provide assessments

for identifying a pupil’s current developmental level and the next (develop-

mentally appropriate) instructional step; and (c) detail instructional activities

to help the pupil achieve this next level (Daro,Mosher, Corcoran, & Barrett,

2011; Sarama & Clements, 2009b, 2009c). HTLs are invaluable in

readiness or remedial instruction in that they lay out in sequential order

the developmental prerequisites and accompanying instructional activities

needed to achieve a target level of instruction. In effect, they can provide

guidance in what scaffolding children at a particular developmental

level need.

Consider, for instance, the case of 3-year-old Alison (Baroody, 1987).

Her father asked, “What number comes after nine when we count?” Stum-

ped, Alison did not reply. Her mother intervened by asking, “What comes

after “one, two, three, four, five, six, seven, eight, nine.” Alison quickly

responded, “Ten.” This scenario makes sense in terms of a verbal-counting

HLT summarized in Table 1. Alison was at Level 2 in Table 1 (the

unbreakable chain level) and had to use a “running start” (count from

“one”) to indicate the next number in the counting sequence (e.g., What

comes after nine?). As children become familiar with the counting sequence,

they achieve the breakable chain level (Level 4A in Table 1) and no longer

need a “running start” to determine the number that follows another.

Instead they can access the counting sequence at the given number and state

its successor (e.g., immediately indicate that “ten” comes after “nine”). As

her father’s question (What comes after nine?) was two levels above Alison’s

developmental level, she may not have understood the question and cer-

tainly did not have the means for answering. Her mother’s question

(What comes after one, two…nine?) was at her developmental level and thus

permitted her to apply what she knew to solving the novel task of answering

a number-after question. According to the HLT in Table 1, instruction that

might help a child move from Level 2 (the unbreakable chain level) to

achieving Level 4 (the breakable chain level) is the transitional Level 3

(determining the number-after with increasingly abbreviated running starts).

49Using Concrete Experiences



Table 1 An Example of a HLT: Verbal-Counting Development
HLT Level Conceptual Basis (Fuson, 1988)/Comments

Level 1: Sing-songer String level: Knows the first few number words as
an undifferentiated string of sounds (multisyllabic
sound): “onetwothree.”

Level 2: Counter from “one” Unbreakable chain level: Differentiates among
number words of the sequence but does the have
the flexibility to reproduce the sequence other
than starting with one (i.e., cannot enter the
sequence at any point and count). Thus, to
determine the number after five, a child would
have to use a running start—that is, count from 1
to 5 (e.g., count: “1–2–3–4–5, 6”).

Level 3: Number-after citer with
abbreviated running starts

Transition between unbreakable chain level and
breakable chain level: In order to help children at
Level 2, a teacher or parent could pose number-
after questions with an increasingly abbreviated
running start: “What comes after 2, 3, 4, 5?”; then
“What comes after 3, 4, 5?”; and finally “What
comes after 4, 5?”

Level 4A: Number-after citer
without a running start

Breakable chain: Familiarity with the counting
sequence permits the child to enter the counting
sequence at any point and specify the next
number. Thus, a child no longer needs a running
start or even an abbreviated running start to
determine what comes after any given number
(e.g., a child answer the question “What comes
after 5?” by saying “5, 6,” or “6”).

Level 4B: Counter from n Once a child can determine the number after
another, they can continue a count from any n
(e.g., in response to the request “Start with 5 and
count,” a child counts “5, 6, 7, 8, 9…” or “6, 7, 8,
9…”).

Level 5: Counter-on using patterns Transition between breakable chain level and
numerable chain level: At this level, a child can
count on a specified number of times
intuitively—usually only a few times—by means
of a pattern (e.g., in response to start with 5 and
count two more times, a child counts, “Five,
SIX, seven”).

Level 6: Counter-on keeping track Numerable chain level: Realizes that counting
words themselves can be counted. Requires a
keeping-track process to determine when to stop
the counting-on process (e.g., for start with five
and count four more times: “5, 6 is 1 time, 7 is 2
times, 8 is 3 times, 9 is 4 times”).



The careful use of HLTs can better ensure that concrete experiences at

the preschool (age 3–5 years) and primary (grades K to 3) levels are educa-

tive. A key cause of mathematical learning difficulties in school, especially

among children at risk due to poverty, are gaps in their readiness (informal)

knowledge. For preschoolers without rich learning opportunities, informal

knowledge can be seriously incomplete or narrow (Baroody, 1987). Iden-

tifying where a child is on a HLT can help preschool or primary-level

teachers provide the educative experiences that remedy informal deficien-

cies and extend existing informal knowledge strengths. Another key cause

of mathematical learning difficulties in school is a gap between school math-

ematics instruction and children’s existing knowledge (Ginsburg, 1977).

Identifying where a child is on an HLT can help preschool to primary-level

teachers select the concrete experiences that connect formal mathematics to

the child’s informal knowledge and enable the child to assimilate symbolic

school instruction successfully.

3. HOW CAN CONCRETE EXPERIENCES BE USED
EFFECTIVELY IN EARLY CHILDHOOD MATHEMATICS
INSTRUCTION?

Since at least the time of Resnick’s (1982; Resnick &Omanson, 1987)

failed attempt to use base-ten blocks to foster an understanding of base-ten,

place-value concepts and skills, it has been clear that manipulatives do not

guarantee meaningful learning (Ball, 1992; Baroody, 1989; Clements &

McMillen, 1996). That is, children may not spontaneously link concrete

models or what they learn fromworking with concrete objects to other rep-

resentations, particularly written representations (Uttal, O’Doherty,

Newland, Hand, & DeLoache, 2009). How to link a concrete model to

symbolic mathematics to effectively illuminate an intended referent remains

a critically important challenge for early childhood mathematics instruction.

Discussed next are cognitive perspectives, a perspective based on Dewey’s

interaction principle and learning trajectories, and instructional strategies

for ensuring an educative experience.

3.1 Perspectives From Cognitive Psychology
3.1.1 Cognitive Alignment Framework
A key factor in linking concrete models effectively to targeted referent

knowledge may be how well the model embodies the relations, steps, or

other attributes of the referent knowledge. As Laski and Siegler (2014,
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p. 861) noted, “The cognitive alignment framework proposes that the more

precise the alignment among the desired mental representation, the physical

materials being used to promote learning, and the activities that direct

learners’ thoughts and actions during the acquisition process, the greater

the learning is likely to be.” See Clements and Battista (2000) for a discussion

on cognitively aligning software.

Consider, for example, children’s relative magnitude judgments (see

Baroody & Purpura, 2017, for a detailed discussion). Research indicates that

initially children do not recognize that number words represent relative

magnitude. Theoretically, this would result in assigning all the numbers

1–10 the same level of magnitude or point on a number line (Frame A in

Fig. 1). In time, they recognize that smaller, familiar numbers have distinct

relative magnitudes but their sense of relative magnitude with larger, unfa-

miliar numbers is fuzzy. For instance, in finding out that her father was 42,

5.5-year old, Arianne asked in all innocence, “Is that close to a hundred,

Daddy?” For younger children, the first few numbers may have distinct rel-

ative magnitudes, but even somewhat larger numbers such “six” or “seven”

may simply be viewed as “many” or “a lot” and almost indistinguishable

from “ten.” The result is a response pattern that is logarithmic even for num-

bers 1–10 (see Frame B in Fig. 1). Children then see each succeeding num-

ber in the counting sequence from 1 to 10 as representing a larger amount

(a linear representation of magnitude comparisons; Frame C in Fig. 1) and

eventually as exactly one larger than its predecessor (i.e., a linear represen-

tation with a slope of 1; Frame D in Fig. 1). Research also has indicated that

playing a linear numerical board game (The Great Race), which directly

models a mental left-to-right number list for counting from 1 to 10 (see

Fig. 2; Resnick, 1983) significantly improved the linearity of children’s mag-

nitude judgments and other aspects of early numeracy (Ramani & Siegler,

2008; Siegler & Ramani, 2008). Indeed, playing The Great Racewith a linear

board significantly produced better results than doing so with a circular

board (Ramani & Siegler, 2011; Siegler & Ramani, 2009). Unfortunately,

methodological issues cloud what conclusions can be drawn from such

research (again see Baroody & Purpura, 2017, for a detailed discussion).

Similarly, playing a semilinear numerical board game using a 0-to-100

hundreds chart (Race to the Moon) significantly improved the linearity of

children’s magnitude judgments to 100 with a counting-on, but not a cou-

nting from “one” process (Laski & Siegler, 2014). This was attributed to

the fact that, unlike the count-from-1 training, the count-on training directs

attention to the numbers in the squares by requiring a child to explicitly name
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them. The resulting encoding process “provides the data needed to correlate

numbers in different squares with the visuospatial, auditory, kinesthetic, and

temporal cues that accompany reaching that square. In contrast, the counting-

from-1 procedure does not require, or even encourage, attention to the

numbers in the squares” (p. 861). Although counting-on 1 or 2 especially

(e.g., moving two spaces from 37 by simply counting “38, 39”) may not

require an explicit keeping-track process, Baroody and Purpura (2017)

hypothesized adding a process (e.g., counting-on “38 is 1more, 39 is 2more”)

might significantly enhance the efficacy of Race to the Moon.

Researchers and educators need to consider carefully what instructional

goals they are trying to achieve with particular concrete materials and, as

needed, adapt the process by which children interact with the materials.

An adaptation of Wynroth’s (1986) Slides and Ladders, the Grid Race

(Baroody&Coslick, 1998)—likeRace to theMoon—utilizes a 0–100 hundreds
chart. The goal of Slides and Ladders or the Grid Race, though, is to foster dis-

covery ofmental-addition (and subtraction) rules, such as the decade-after rule

(adding 10 to a decade results in the next decade; e.g., 50+10¼60) or the

add-10 to a two-digit number rule (the sum is the next decade with the same

ones digit; 57+10¼67), and a partial-decomposition mental-addition strat-

egy (e.g., 57+36¼57+30+6¼87+6¼93). For such goals, the 0-to-5 spin-

ner used in Race to the Moonmust be replaced by one of several different decks

of cards designed to emphasize a particular regularity. For fostering the

decade-after rule, the deck would be composed of 0 or 10 cards. For promot-

ing the add-10 to a 2-digit number rule, the deckwould be composed of some

cards with a number from 1 to 9 and an abundance of cards with 10. For pro-

moting the partial-decomposition strategy, the deck would consist of cards

with two-digit numerals (e.g., 14 and 23). For all three versions, the card a

player draws would determine the number of spaces a child moves on the

hundreds board. For instance, if a child is on space 57 and draws a 10, the child

would count by ones 10 spaces to move to space 67. Wynroth’s (1986) ratio-

nale was that children would discover a shortcut for the laborious process of

counting 10 spaces from 57 to 67, namely you can simply move vertically up

one row in the table whenever you add 10. Theoretically, this single vertical-

move shortcut provides a basis for discovering the decade-change rule for

adding 10 to multidigit numbers (e.g., 57+10 is the next decade, 60, plus

the same number of units, seven).

If Laski and Siegler’s (2014) hypothesis that count-on procedure requires

an encoding process that facilitates attention to number and numerical rela-

tions is correct, then, a version of theGrid Race that requires a child to specify
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the problem and outcome (e.g., “57 plus 10 is 67”) should be more effica-

cious in helping children discover mental-addition (and subtraction) short-

cuts than a version in which children do not relate their move to a verbal

equation. Indeed, encouraging children to use a keeping track process

(e.g., “57, 58 is 1 more, 59 is 2 more, 60 is 3 more…67 is 10 more”) might

be particularly motivating for finding the vertical-jump shortcut or the same

ones—next decade rule.

3.1.2 The Dual-Representation Hypothesis
A rationale for using hands-on manipulatives is that the activity of physical

exploration can be progressively internalized to form conceptual under-

standing. Intuitively making manipulatives more perceptually rich should

make them more attractive and interesting and help children focus better

on a task. Recent research raises questions about these assumptions and even

indicates that such physical manipulation and perceptual enrichment of

manipulatives may, in many cases, distract from learning (Kaminski,

Sloutsky, & Heckler, 2008, 2009, 2013; McNeil & Jarvin, 2007; McNeil

et al., 2009).

According to the dual-representation hypothesis, successful use of a sym-

bolic artifact entails mentally representing both its physical and

abstract nature. However, such a dual representation is challenging to young

children because they are less likely to recognize that a new artifact can

have symbolic import. Moreover, they have difficulty simultaneously

formulating two active (concrete and abstract) representations of an artifact.

“Manipulations that increase the salience of a [model] as a concrete

object should decrease children’s appreciation and use of it as a [representa-

tion], whereas manipulations that decrease children’s focus on the object

properties of the model should increase their ability to focus on what

the [stand-in] represents” (Uttal et al., 2009, p. 157). Consider four

examples.

1. DeLoache (2000) hid a small toy dog in a miniature replication of a room

and then asked a child to use this model to find a large stuffed dog hidden

in the regular size room. In one study, 3-year olds allowed to physically

interact with the model during a free play prelude were less successful

than those who did not play with the model in using the representation

of the hiding place and regular size room to find the hidden larger dog.

In another study, 2.5-year olds who viewed the model dog being hid

from behind a window were more successful than their peers who

had physically interacted with the small toy dog. Marzolf and
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DeLoache (1994) found that using a picture as a “map” was superior to

using a three-dimensional model. Uttal et al. (2009) concluded that

physical interaction interferes with viewing a manipulative as a model.

2. Sarama and Clements (2009a) concluded that computer-based mani-

pulatives may facilitate generalization and transfer more effectively than

physical manipulatives. Uttal et al. (2009) concluded, “Using computer-

based manipulatives reduces the demands of dual representation,

enabling children to focus less on the on-screen objects themselves

and more on the connections between the manipulatives and mathemat-

ical representations” (p. 138).

3. The results of Uttal et al. (2013) appear to support the view that children

have difficulty connecting concrete and abstract representations. In

Experiment 1a, these researchers found that manipulative-based instruc-

tion on multidigit subtraction with second graders did not transfer to

using a written algorithm and instruction on a written algorithm did

not transfer to block models.

4. Experiment 1b by Uttal et al. (2013) corroborated the view that highly

attractive manipulatives or concrete objects may make it particularly dif-

ficult to link a concrete model with an abstract referent. Specifically, sec-

ond graders who used regular Digi-Blocks designed to teach the base-ten

system and how to solve two-digit subtraction seldom used the manip-

ulative inappropriately, whereas most of their peers who used brightly

colored and patterned blocks were side tracked.

5. Kaminski et al. (2009) had 11-year olds learn a mathematical concept

either concretely with perceptually rich symbols or abstractly with

symbolic models. Although the concrete model made learning easier,

it resulted in less transfer, whereas the symbolic model made learning

harder but resulted in greater transfer. The implication is that concrete

representations may limit the generalizations pupils can derive.

Clearly, educators need to use manipulatives thoughtfully, not laden repre-

sentations with frivolous or unnecessary details, and consider carefully the

advantages and disadvantages of manipulatives in various forms. Barmby,

Harries, Higgins, and Suggate (2009) reasoned that groups-of or number-

line models of multiplication obscure the operation’s commutative prop-

erty. Indeed, it is plausible (based on the authors’ informal observations) that

children may also better exhibit understanding of multiplicative commuta-

tivity in the sterile context of symbolic expressions (e.g., 9"7 and 7"9)

than with even rectangular-array models (e.g., 9 rows of 7 items or 7 rows

of 9 items) or area models (e.g., rectangles 9-"7-linear units and
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7-"9-linear units), because the concrete model of 9"7 and 7"9 in each

case look different.

However, the evidence supporting the dual-representation hypothesis is

not clear-cut.

1. A maxim in mathematics education is: If manipulatives are to be used

effectively as a teaching tool, provide the manipulatives to children

for a period of free exploration. With their curiosity satisfied, they will

then be ready to use the manipulatives as intended by the educator—as a

tool for prompting reflection and learning. Children in the DeLoache

(2000) study were given up to 10 min of free play with the model mate-

rials “or any time after 5 min [if] the child seemed to be losing interest”

(p. 334). It is unclear whether—consistent with the maxim just described

and inconsistent with the dual-representation hypothesis—the children

who lost interest performed better than those who did not. It also seems

important to distinguish between child-initiated activities and adult-

imposed tasks, because childrenmay exhibit a competence on the former

not revealed on the latter (Baroody, Lai, & Mix, 2006). Requiring a

young child to engage in an adult-imposed task is challenging enough

without doing so while the child is still engaged in an interesting

child-initiated activity. A way of making adult-imposed testing (or

instruction) more palatable and motivating to young children is to make

it as similar as possible to child-initiated activities (e.g., present it as a

game). As a transition from free play to the experimental task in the

DeLoache (2000) study, “the experimenter indicated they would ‘do

something different now’” followed by an “extensive orientation to

the [experimental] task” (p. 334). A perhaps more engaging and poten-

tially more productive transition might be introducing the experimental

task as the “Hiding Game.” The tester could first show the large room,

explain that a large stuffed dog is hidden somewhere in the room, and

then offer a clue or hint to the hiding place with toy dog and miniature

room. Such a transition would help evaluate whether failure on the

standard task when preceded by free play has more to with motivational

issues than cognitive limitations. Even if dual representation proves to be

a challenge to 2.5-year olds over a variety of conditions (including moti-

vating situations), symbolic representation ability and the ability to dis-

cern adult expectations improves with age. Thus, it is not clear that the

dual-representation hypothesis is (as) applicable to 7-year olds encour-

aged to show how base-ten blocks could be used to solve a two-digit

subtraction problem involving renaming in the Uttal et al. (2013) study.
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2. Direct comparisons of the use of virtual and physical manipulatives are

relatively rare, and the advantage of virtual manipulatives may be due to a

number of factors other than that they are less distracting than physical

manipulatives, which can be touched. See Sarama and Clements (2009a)

or Clements and Sarama (2012) for a list of advantages of virtual manip-

ulatives over real manipulatives.

3. A plausible alternative explanation for the results of Uttal et al.’s (2013)

Experiment 1a is that the lack of transfer between modes was due to the

ineffective nature of the instruction. Both manipulative- and written-

based instruction focused on procedures, not the conceptual rationale

for the multidigit subtraction algorithm and spanned only two sessions.

Brief, meaningless instruction—whether with concrete materials or

written symbols—is not likely to promote flexible application of knowl-

edge (Baroody, 1989).

4. Moreover, the key issue may not be as simple as “gaudy vs plain” (as

suggested by the result of Uttal et al.’s (2013) Experiment 1b.

Petersen and McNeil (2013), for example, found that perceptually rich

objects facilitate performance when counting tasks involved unfamiliar

objects but hindered performance when the tasks involved familiar

objects. Although it would seem that the dual-representation hypothesis

would predict that novelty and perceptual richness would combine to

render a jazzy, unfamiliar object relatively useless as a learning tool,

the authors speculated that the increased attention such objects attracted

was channeled into understanding the task, whereas, with familiar

objects, it activated existing knowledge of the object and served to draw

attention away from the task.

Perhaps more importantly, there may be value in making a model per-

ceptually rich, interesting, or attractive if it helps draw attention to a critical

relation or otherwise promotes meaningful learning. For example, the

bright colors and patterns of Digi-Blocks in the Uttal et al. (2013) study

did not serve any pedagogically useful purpose (e.g., the blocks did not help

underscore the grouping or place value ideas underlying the two-digit sub-

traction procedure). In contrast, using one bright color to represent groups

of 10 and a different bright to represent units might help to underscore a

grouping concept and the conceptual rationale for regrouping.

5. There are plausible alternative explanations to Kaminski et al.’s (2008,

2009, 2013) evidence. One is the common problem in instructional/

curriculum evaluation of using a dependent measure (the test of transfer)

that better matched the abstract learning condition. The concrete
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training involved showing participants two measuring cups and asking

them to determine what would be “left over” after combining the con-

tent of one cup of the cups (e.g., 1/3+1/3 results in 2/3 leftover; 2/3

+2/3 results in 1/3 leftoverc). The abstract training involved generic

shapes (e.g., ●+● results in ♦; ♦+♦ results in ●). The transfer task

involved “intentionally concrete and contextually rich” displays (e.g.,

+ results in ; + results in ), which theoretically should

favor the concrete trainees (Kaminski et al., 2009, p. 153). However,

whereas the concrete training involved logical reasoning about fraction

addition, the abstract training might simply elicit memorization of rules

(two circles makes a diamond and vice versa or simply two of a kind

make one of a different kind). Whereas applying knowledge of fraction

addition is readily apparent in the concrete condition, inducing arbitrary

rules might be more challenging. This would account for why the con-

crete condition resulted in better learning during training. However, on

the transfer task, fraction addition is irrelevant but the rule/rules mem-

orized by rote in the abstract condition can be readily applied to two of

the four test trials. Indeed, De Bock, Deprez, Van Dooren, Roelens, and

Verschaffel (2011) found that the concrete learning context transferred

to a similar concrete context and their qualitative analysis raised ques-

tions about Kaminski et al.’s (2013) interpretation of what students

learned from the abstract training.

It is essential to keep in mind Piaget’s caution that it is not the physical activ-

ity itself that is important but a child’s reflection on the physical activity

(Baroody, 1989; Sarama & Clements, 2009a). For research on learning

beyond the sensory-concrete level, a focus on whether children touch

objects or whether objects are perceptually rich is of secondary, or perhaps

little, importance. The key issue is whether a manipulative is pedagogically

meaningful—whether it engages children’s thinking in ways that prompt

reflection on ideas or issues targeted by an educator. That is, a “concrete”

model is one that connects with what children already know and prompts

them to reconsider and extend this existing knowledge.

c The concrete training seems confusing. For example, if the analogy is interpreted as 1/3 in the first cup

is poured into the second cup containing 1/3, nothing is left in the first cup and 2/3 is left in the second

cup. So, in this case, the answer (what is leftover) seems to reference what is in the second cup after

combining the two cups. With 2/3 + 2/3, 1/3 would be left in the first cup and the second cup would

have 3/3. So in this case, the answer (what is leftover) seems to refer to the first cup, not the second cup.

An inconsistent analogy stacks the deck against finding a regularity.
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Although children’s reflection can and should be guided by a teacher or

activity, it probably cannot be forced or imposed. As with instruction in gen-

eral, imposing how to use manipulatives may be no more effective than

imposing symbols and written algorithms on children (Baroody, 1989;

Gravemeijer, 2002). As McNeil et al. (2009, p. 139) elegantly noted: Some

evidence supports that “students may not actively process the consequences

of actions on concrete objects unless they, themselves, are the directors of

that activity (Martin, 2009) …” Future research must investigate the best

ways for teachers to strike a balance between providing direction and all-

owing students to regulate and direct their own activity.

3.2 Perspective Based on Dewey’s Interaction Principle and
Learning Trajectories

Cognitive perspectives (the cognitive alignment framework and dual-

representation hypothesis) focus on external factors. To better understand

the effective use of concrete materials, it is essential to take into account

the interaction of external and internal factors and children’s development

or readiness as embodied by HLTs. However closely a concrete representa-

tion aligns with a mathematical idea, it does not guarantee that it will be an

appropriate or effective model for a child if the formal idea is developmen-

tally too advanced. For this reason, children may need to begin with a model

that is aligned with their existing developmental level of mathematical

understanding and thinking and only approximates the formal mathematical

idea. In effect, educational researchers and practitioners might better con-

sider a series of concrete models that build on children’s informal under-

standing and thinking and increasingly becomes aligned with the formal

mathematical idea. In this subsection, the following five areas of early child-

hood mathematics education are analyzed in terms of Dewey’s interaction

principle and HLTs: patterning, a linear representation of the counting

numbers and its hypothesized developmental prerequisites, using number

lines to formally introduce magnitude comparisons and arithmetic, and

base-ten place-value concepts and skills.

3.2.1 Patterning
In Workjobs published in 1972, Baratta-Lorton recommended using letters to

label, identify, and discuss repeating patterns. For example, she suggested label-

ing #□#□#□, up-down-up-down-up-down, blue-red-blue-red-blue-red,

and long-short-long-short-long-short all ABABAB or, for short, AB patterns

and #□□#□□#□□, up-down-down-up-down-down-up-down-down,
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blue-red-red-blue-red-red-blue-red-red, and long-short-short-long-short-

short-long-short-short all ABBABBABB or, for short, ABB patterns. Note

that the short version serves to identify a repeating pattern’s “core”—the basic

elements that are repeated or part that repeats.

Doug Clements, who was a kindergarten teacher at the time, recalls

being highly skeptical of Baratta-Lorton’s (1972) recommendation to label

patterns with letters because it struck him as too abstract. Nevertheless, he

tried the letter-labeling method with his classes and became convinced of its

value. The method is now a popular feature of early childhood mathematics

programs, such as the Building Blocks program (Clements & Sarama, 2013).

Baroody (1993, p. 2–84) offered the following explanation for why the

letter-labeling method may be effective:

“Labeling patterns can help children find repeating patterns and discover
commonalities among such patterns … using letters can help students ana-
lyze and identify patterns. Moreover, coding patterns with letters gives children
a convenient way of explicitly describing patterns… such letter codes can help
children see that patterns constructed of different materials can share the
same structure (emphasis added). Understanding that a pattern can be
embodied in various, even different-looking, ways represents an important
advance in children’s mathematical thinking. There comes a dawning recog-
nition that mathematics is a search for underlying structure that transcends
appearances.”

Note that the last insight could arguably be classified as a really “big idea.”

Recently, Fyfe, McNeil, and Rittle-Johnson (2015) adduced evidence

that labeling concrete material abstractly with letters (e.g., “ABABAB”) is

significantly more powerful than doing so concretely with a physical

characteristic such as color names (e.g., “blue-red-blue-red-blue-red”) in

fostering patterning among preschoolers. They concluded: “Using abstract

language to describe patterns facilitates children’s pattern abstraction” (p. 5)

and was particularly beneficial when children correctly adopted the letter-

labeling method.

Fyfe et al.’s (2015) results reinforce the point that manipulatives them-

selves do not guarantee learning (Ball, 1992; Baroody, 1989; Clements &

McMillen, 1996) but that what is critical is how concrete materials are used.

Specifically, they concluded that their results are consistent with the

cognitive alignment framework (Laski & Siegler, 2014) and the dual-

representation hypothesis (Kaminski et al., 2013; Uttal et al., 2009). Fyfe

et al.’s (2015) research, though, raises four interesting questions that

underscore the importance of Dewey’s interaction principle.
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1. Is there a critical age or developmental level for successfully introducing

the letter-labeling method?

Fyfe et al. (2015) found a significant age effect—older, but not youn-

ger, children tended to benefit. (Participants ranged in age from 3.6 to

4.9 years, average¼ age 4.4, SD¼0.4.) Perhaps there is a critical age that

is necessary to benefit from the letter-labeling training. Research needs

to address this potentially critical internal factor. Perhaps more likely,

though, children may need to reach a certain developmental level before

the letter-labeling method makes sense. Research is needed to ascertain

the parameters of this critical internal factor—including any develop-

mental prerequisites for understanding and using the letter-labeling

method.

2. Where in a patterning HLT should the letter-labeling method be

introduced?

The learning trajectory detailed by Sarama and Clements (2009b)

indicates that the ability to translate a pattern in one medium into

another (e.g., translate a pattern comprised of geometric shapes into

numbers or letters) develops relatively late (Level 4 in Table 2) and seems

to imply teaching the letter-labeling method should not be taught before

6 years of age. Unclear, though, is whether Levels 1–3 are developmental

prerequisites for learning the letter-labeling method or whether these

levels might benefit from introducing this method first. Note that the

Level 1 (Pattern Recognizer) activity of describing the pattern on a strip

(e.g., square, circle, square, circle, square, circle, etc.) may not necessarily

involve recognizing a pattern. A child could just name each shape in

turn. Note that the Level 2 (Pattern Duplicator) activity of fixing or

duplicating a pattern such as square, circle, square, circle, square, and cir-

cle may simply involve matching a shape on the strip with the shape of a

block. So in a real sense, a child could duplicate a pattern by using a

nonpattern-based process. The Level 2 activity of extending a pattern

would seem to require at least an intuitive understanding of a repeating

core. As the next question suggests, it may be particularly useful to intro-

duce the letter-labeling method before introducing more complex pat-

terns (Level 3 in Table 2).d

d Nicole McNeil (Personal Communication, 3/23/2017) noted that it would be interesting to compare

musical sounds, such as da-dum, with the letter-labeling method to see if the former might help young

children even more in identifying pattern cores.
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3. Is the letter-labeling method effective with all types of repeating

patterns?

As Fig. 3 indicates, the impact of the abstract letter-labeling method

varied with the type of pattern. Specifically, it had the least impact with

AB and ABC patterns, substantial impact with ABB and AAB patterns,

and the greatest impact with the AABB pattern. With the concrete

method of labeling patterns with physical characteristics, the AB pattern

was at least somewhat more salient than the other patterns and, thus, pro-

vided less room for improvement. An AB pattern’s saliency may be due

to its simplicity—a core of two different elements that alternate. In con-

trast, ABB, AAB, and AABB patterns have a core of two different ele-

ments that repeat in a more complex manner, and the ABC pattern have

a core of three different elements. The letter-labelingmethodmay have a

limited impact on ABC pattern recognition perhaps for the reasons

discussed next.

4. Are the results sustainable and generally applicable?

The Fyfe et al. (2015) study involved a single training session of

20min. So it is unclear whether the results would persist over time

and how much instruction is needed to maintain gains. Importantly,

Table 2 Selected Levels From the Patterning Learning Trajectory From Sarama and
Clements (2009a)
Level Name Description of Developmental Level

0. Preexplicit Patterner Implicit pattern detection and use. Labels
a visual, rhythmic, or other regularity a
“pattern” (e.g., “My shirt has pattern”)

1. Pattern Recognizer Explicitly recognizes and labels a simple
sequential repeating pattern (e.g., “I am
wearing a blue, red, blue, red blue, red
pattern”)

2. AB Pattern Fixer, Duplicator,
Extender

Can fill in a missing element of a
ABABAB pattern, then copy it, and
finally, extend it

3. Pattern Fixer, Duplicator, Extender
of More Complex Repeating Patterns

Can fill in a missing element of, for
example, ABBABBABB pattern; then
copy it, and finally, extend it

4. Pattern Unit Recognizer Identifies the core (smallest unit) of a
repeating pattern and can translate
patterns into new media (e.g., identify

#□#□#□ as an AB pattern)
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unclear is whether the brief training would achieve the hallmark of

meaningful instruction, namely spontaneous and successful application

of the letter-labeling method to a new pattern, especially less salient reg-

ularities such ABC patterns, and howmuch instruction is needed to pro-

mote such transfer. As the small sample (n¼64) involved middle class

children, will the abstract letter-labeling method be as successful with

other less-advantaged populations of children (e.g., preschoolers from

low-income families, or ELL children)?

3.2.2 A Linear Representation and Its Hypothesized Developmental
Prerequisites

Table 3 illustrates a HLT for children’s relative magnitude judgments of the

number words 1–10. A series of increasing abstract models that take into

account developmental level may promote the levels of this HLT more

effectively than relatively abstract linear numerical board games such as

The Great Race.

3.2.2.1 Increasing Magnitude Principle
A plausible developmental prerequisite for making linear magnitude judg-

ments is the increasing magnitude principle: numbers coming later in the

counting sequence represent larger quantities than predecessors (e.g., nine

is more than four because it comes after four when we count; Level 2 in

Table 3). A cardinality chart—separate numeral cards with interlocking

blocks above each numeral to represent relative quantity—might be even

more effective than the number-list model alone (e.g., The Great Race) in
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Fig. 3 Summary of Fyfe et al.’s (2015) training experiment on patterns.
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Table 3 HLT of Mental Magnitude Comparisons

Level 0: Number words without
magnitude

Children learn the cardinal meaning of the
first few number words—provides a basis
for verbal subitizing (e.g., “two” represents
pairs of objects) but does not realize that
“two” is more than “one”).

Level 1. Subitizing-based relative
magnitude

Verbal subitizing provides a basis for
recognizing that “two is more than one”
and “three is more than two” (ordinal
meaning of the first few number words),
because the child can directly see the
differences in the relative magnitude to
two small collections.

Level 2. Increasing magnitude principle—
relative magnitude of distal numbers

The insight that the order of the number
words for small numbers (one, two, three)
reflect increasing magnitude provides a
basis for the generalization that the
counting sequence represents increasingly
larger quantities—the increasing
magnitude principle. The principle and
familiarity with the counting sequence and the
increasing magnitude concept provide a basis
for comparing two numbers at obviously
different positions in the counting
sequence (i.e., to make gross comparisons
of 2 or 7, 10 or 3, 9 or 5, and 4 or 8).

Level 3. Mental comparisons of
neighboring or successive numbers
(number after equals more)

Once children become sufficiently familiar
with the counting sequence, they can
enter the sequence at any point and specify
the next number instead of always counting
from one. This permits children to apply
the increasing magnitude principle to the task
ofmentally comparing even close numbers, such
as the larger of two neighboring numbers
(e.g., immediately indicate that eight is
more than seven because it follows seven
in the counting sequence).

Level 4. Successor principle (number after
equals 1 more) and a linear representation
of the counting sequence

Verbal subitizing enables children to see
that “two” is exactly one more than “one”
item and that “three” is exactly one more
than “two” items, and this can help them
induce the successor principle (each
successive number in the counting
sequence is exactly one more than the
previous number). The successor principle, in
turn, enables children to view the
counting sequence as n, n+1, [n+1]+1,
… (the positive integer sequence)—a linear
representation of number.



fostering the principle, because—in terms of young children’s existing infor-

mal (discrete-quantity-based) view of the counting sequence—it is a con-

crete and more direct model of relative magnitude (see Fig. 4; Baroody &

Purpura, 2017; Frye et al., 2013).

3.2.2.2 Successor Principle
A plausible conceptual basis for a linear representation of the counting

sequence and hence linear magnitude judgments is the successor principle

(Level 4 in Table 3). This principle entails the insight that each successive

number in the counting sequence is exactly one more than its predecessor

(e.g., nine which immediately follows eight when we count is one more

than eight; Izard, Pica, Spelke, & Dehaene, 2008). Currently, almost no

research has been reported on how to promote the successor principle

and whether such instruction also fosters a linear representation. Reid,

Baroody, and Purpura (2013) compared computer-based training that

focused directly on successor principle and that involving The Great Race.

The successor training consisted of children playing three games involving

a hungry monkey swinging through tree branches on which a number line

Most concrete
(most directly models an
informal counting-based 
view of the number sequence)

Most abstract
(least directly models an
informal counting-based

view of the number sequence)

Discrete-quantity model

(e.g., Cardinality chart)

Semidiscrete-quantity model

(e.g., Number list)

Continuous-quantity model

(e.g., Number line)

0 1 2 3 4 5 6 7 8 9 10 F

Note: The three models of number embody different meanings of number: 

A discrete-quantity model such as a cardinality chart represent what she called a cardinal

meaning of number and corresponds to children’s informal counting-based view of the number

sequence.

A continuous-quantity model such as a number line (linear length) represents what Fuson (1988)

called a measurement meaning of number, which presumbaly requires a formal understanding of 

the concept of a unit of measurement. 

A semidiscrete-model such as a number list approximates both measurement and cardinal

meanings.  

Fig. 4 Three models of number.
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was superimposed to retrieve a banana. The games targeted the number-

after knowledge (what is the number after 3? Level 4A in Table 1), successor

understanding (how many more branches must the monkey swing to get from 3 to 4?

Level 4 in Table 3), and identifying correct application of the successor prin-

ciple (the monkey thinks he needs to swing one more branch to get from 3 to 4, is he

correct?). The direct successor training was significantly more effective than

The Great Race in promoting successor learning but not linear magnitude

comparisons.

3.2.3 Introducing Addition and Subtraction Using a Number-Line Model
Whether a number-line model should be used to formally introduce chil-

dren to operations on numbers needs to take into account the internal factor

of children’s understanding of numbers. In recent years, it has become pop-

ular to recommend using a number line as a basis for formally introducing

young children to addition and subtraction (Bell et al., 2004; National

Mathematics Advisory Panel, 2008). For instance, the supplemental Bridges

in Mathematics (Math Learning Center, 2009) program introduces an addi-

tion item such as 5+3¼8 as hopping to the right 5 and then 3 more. The

inverse of this—the related subtraction item 8 – 3¼5—is shown next by

hopping from 8 in the opposite direction (to the left) three times.

Although it is crucial that children see addition and subtraction as related

operations (e.g., that addition and subtraction of the same number undo

each other), the number-line model used by Bridges in Mathematics may

be too abstract for young children for two reasons (Baroody, 2016a).

Consistent with physical to mental embodiments view, one is that it initially

connects symbolic equations such as 5+3¼8 and 8 – 3¼5 to a relatively

sterile iconic representation (number line) instead of an enactive represen-

tative (e.g., modeling inversion the addition and subtraction with objects) or

a “transitional” representation (e.g., modeling inversion the addition and

subtraction of the same number with pictures of objects).

Consistent specific to general (familiarity) view, a second reason is that a

number line may be inconsistent with young children’s informal view of

numbers. As Fig. 4 suggests, a number line represents a linear extent

(a continuous quantity) and thus embodies what Fuson (1988) identified

as a measurement meaning of number. Evidence indicates that young children

view the number sequence as representing a series of increasingly larger

discrete quantities—as embodying what Fuson (1988) identified as a cardinal

meaning of number. For example, they typically (a) do not spontaneously break

up continuous quantities into countable units (Fuson, 1988; Huntley-

Fenner, 2001) and (b) misconceive number lines as representing discrete
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quantities, as evidenced by them counting the numbers or hash marks on the

number line, not the linear extents between hash marks (e.g., counting 0 or

its hash mark as “one”; Lehrer, 2003). A key source of the difficulties is that

children construct a concept of linear unit relatively late. Indeed, Saxe et al.

(2010) found that fifth graders struggled with number-line-based problems

that required the application of such a concept. For instance, shown a num-

ber line with 8 and 10 marked and labeled, many participants incorrectly

considered the distance between 8 and 10 as one unit and located 11 at

the position for 12. For such reasons, mathematics educators have long

recommended against using number lines as basis for introducing formal

mathematics instruction (Ernest, 1985; Fuson, 2009), and the National

Research Council (2001) recommend against using these models as instruc-

tional tool before grade 2.

Two qualifications are in order. If instruction helps students construct a

solid concept of linear units, the use of a number line for teaching addition

and subtraction would be consistent with Dewey’s (1963) interaction prin-

ciple. Using the number line to introduce two-digit mental addition and

subtraction as done in Realistic Math may also be consistent with this prin-

ciple and a potentially useful technique. As Frame A of Fig. 5 illustrates, the

number line in this program is initially related to children’s informal

discrete-quantity view of numbers by showing 10 circles between each hash

mark (Bl€ote, Klein, & Beishuizen, 2000). As Frame B of Fig. 5 illustrates, the

empty number line is essentially used as a notation system for aiding students’

calculations that can be based on their discrete-quantity view of numbers

(Bl€ote, Van der Burg, & Klein, 2001).

3.2.4 Base-Ten and Place-Value Concepts and Skills
Like the previous section, this subsection illustrates why it is crucial to con-

sider internal (psychological) factors when considering the use of concrete

experiences and progressively adapting these experiences as children achieve

higher levels on a HLT.

3.2.4.1 Understanding Multidigit Numbers in Terms of Base-Ten/Place-Value
Concepts

Children informally view multidigit numbers such as 23 in terms of

23 (countable) units. They must construct base-ten concepts (e.g., 10 ones

can be grouped together to form a larger unit called “ten”) and place-value

concepts (e.g., the value of the digit 2 in 23, by virtue of its position in the

tens place, represents 2 tens (2"10) and 3, by virtue of its position in the

ones place, represents 3 ones (3"1).

68 Arthur J. Baroody



Baroody (1990) adduced a sequence of increasingly abstract

manipulative- or picture-based models for fostering the meaningful learning

of grouping-by-ten (base-ten) and place-value concepts. Frame A of Fig. 6

illustrates the most concrete multidigit number model (e.g., interlocking

blocks) in the sense that it builds directly on children’s informal

counting-based view of multidigit numbers in two ways: (a) an

interlocking-block model is proportional (e.g., the representation of a ten is

10 times larger than that for one) and (b) it requires children to physically

put together 10 ones to create a ten. Although also proportional, Frame

B models (e.g., base-ten blocks) are somewhat more abstract in that they

entail trading 10 embodiments of ones for a pregrouped embodiment of ten. That

is, unlike using interlocking blocks, which literally entails the experience of

constructing a ten from 10 ones, using base-ten blocks entails a child recog-

nizing that a 10-stick or “long” could theoretically be constructed by gluing

10 units together. Conversely, a “ten stick” composed of interlocking blocks

can physically be decomposed into 10 unit blocks, whereas a long can only

be traded for 10 cubes.

0 50

A

The number 1–10 and then to larger numbers is accompanied by a bead model to ground the
representation in children’s discrete-quantity (counting-based) view of the whole numbers.

B

Using a empty number line to informally solve 18 + 15 in two ways:

(a) Decompose the 15 into 10 + 5: 18 + 10 + 5 = 28 + 5 = 33.

(b) Decompose 15 into 2 (so as to replace 18 with the decade 20), 10 (which is added to 20
      to make 30), and 3 (which is added to 30 to make 33).

Fig. 5 Use of the number line in Realistic Math to teach two-digit addition and
subtraction.
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Both Frame A models (e.g., interlocking blocks) and Frame B models

(e.g., base-ten blocks) are more concrete than nonproportional models shown

in Frames C and D of Fig. 6. Frame C models, which involve trading

10 embodiments of one for a single different-looking embodiment of 10) are less

abstract than Frame D models, which involve trading 10-for-1 embodiments

that are all identical save for the position on say a place-value trading board. Note

that while Frame A, B, C, and D models all model grouping (albeit at

increasingly abstract levels), only Frame D models represent an effort to

(base-ten blocks) (drawing of base-ten blocks)

Concrete models Pictorial models

(interlocking blocks) (tally marks)

B

(colored chips) (Egyptian hieroglyphics)

Tens Ones OnesOnesOnes TensTens Tens

(trading board) (chalkboard)

1 2

1 2

1 2

1 2

C

D

A

1 2

1 2

1 2

1 2

Note. Montessori Beads are between Frame A and B in abstractness. Although 10 discrete beads are strung together
to form a ten string (and 10 strings of ten are combined to form block of 100), it may not be practical for children to
do this. Yet, the ten string is more clearly made up of 10 discrete units than the long (ten-stick) of a base-ten model. 

Proportional model that requires children to group 10 ones into a ten themselves

Proportional model that involves trading in 10 ones for a pregrouped ten

Nonproportional model that involves trading in 10 ones for a different looking ten marker

Nonproportional model that involves trading in 10 ones for an identical marker that 
  represents ten by virtue of its position

Fig. 6 Concrete-to-abstract models of a base-ten and place-value meaning of two-digit
numbers.
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directly embody a place concept (i.e., the position of a digit determines it

value; e.g., whether it is a ones or tens).

The key unresolved pedagogical issue is whether it is more efficacious

to use a series of increasingly abstract models that start by building directly

on children’s informal counting-based view of numbers or—as suggested

by cognitive alignment perspective—start with a model that directly

represents both the grouping and place-value characteristics of multidigit

numbers. Other unresolved questions include: Consistent with an inter-

action perspective and contrary to the dual-representation hypothesis

(DeLoache, 2000; Kaminski et al., 2013; Uttal et al., 2009), is using

Frame A models in which, for instance, children physically construct a

ten from units and then Frame B models (e.g., trading 10 unit blocks

a long) more efficacious than starting with Frame B models? Similarly,

are using proportional models and then nonproportional models more

efficacious than starting with nonproportional models? Are using less

abstract models and then the relatively abstract Model D more powerful

than starting with Model D? Do the results for all of the previous ques-

tions with advantaged children also apply to various at-risk populations,

such as children from low-income families or those with mathematical

learning difficulties?

3.2.4.2 Magnitude Comparisons and a Linear Representation to 100
Even after children have constructed an understanding of the successor prin-

ciple (e.g., recognize in principle that a number is one more than its prede-

cessor in the counting sequence), they continue to exhibit a logarithmic

response pattern on magnitude comparison tasks involving larger and rela-

tively unfamiliar numbers. Various factors have been adduced to account for

such a nonlinear response pattern (Anobile, Cicchini, & Burr, 2012; Barth &

Paladino, 2011; Slusser, Santiago, & Barth, 2013). Landy, Charlesworth, and

Ottmar (2016, p. 21) concluded:

It appears, however, that human representations of natural numbers, at least
beyond a paltry few hundred thousand iterations, rely on resources quite distinct
from successorship or even a metric “number line,” and impose substantial addi-
tional structure given by the numeral systems. A fundamental mistake made by
classical empiricism was to assume that the inner representations were
iconic—that they were like the outer represented. When reasoning about large
numbers, we appear to rely on representations that are fundamentally unlike
the numbers themselves.

Perhaps unlike smaller familiar numbers, larger numbers may not be repre-

sented in the form of a mental number line as suggested by Resnick (1983).
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Instead, their representation may be based on an understanding of the struc-

ture of the number system. For example, correctly judging the relative mag-

nitude of a million and a billion (see Fig. 7) depends on understanding that a

billion is 1000 times larger than a million.

For children who are just becoming familiar with the numbers to 100,

the Grid Race might be more efficacious than Race to the Moon in exploring

the structure of the number from 0 to 100 and, thus, have a greater impact on

various aspects of numeracy, including a linear representation of numbers.

Specifically, whereas counting-on 1 or 2 from a two-digit number is effec-

tively geared toward discovering the (already known) successor principle,

it—unlike counting 10 spaces from a decade or other two-digit

number—is less likely to reinforce the repetitive structure of the numbers

from 0 to 100 (e.g., each decade is 10 more than the preceding decade or

repeatedly subtracting 10 changes only the decade not the number of ones).

Whereas reinforcing the successor principle is not likely to improve the lin-

earity of magnitude comparisons, a better grasp of how two-digit are inter-

related might.

3.3 Instructional Strategies for Ensuring Educative Experiences
3.3.1 Eight Guidelines
Mix (2010) cited five (largely external) dimensions or variables that might

impact the effectiveness of manipulatives: variations in structure, the amount

of contact, the relation of a model to written symbols, the amount of expo-

sure, and the number of models. These variables are related to Points 1, 2, 5,

6, and 7, respectively. In addition, Points 3, 4, and 8 are important applica-

tions of Dewey’s (1963) interaction principle. Note that for helping children

A million—a billion, what’s the difference?

If the left-hand endpoint below = 0 and the right-hand endpoint = a billion and 

a < 1/100, b = 1/100, c = 10/100, d = 50/100, e = 90/100, f = 99/100, and g > 99/100, 

What letter best represents the position that a million would occupy on the number 

line below? 

ab d fg
||_________|______________________________________|___________________|_______||
^ ^
0 106

c e

Fig. 7 The million vs a billion problem.
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overcome the long-recognized difficulty of connecting physical models of

mathematical ideas or processes to formal written representations

(Ginsburg, 1977; Resnick, 1982; Uttal, Liu, & DeLoache, 2006), Points

3, 4, and 5 are particularly important.

1. Structured use. A Piagetian approach based on free play, once the mantra

of radical constructivists and many early childhood educators, is now

generally not considered a viable instructional approach. Although free

play is important in its own right, the presence of manipulatives alone in

a free play context does not guarantee an educative experience (Baroody,

Clements, & Sarama, in press; Fuson, 2009). For example, Clements,

Copple, and Hyson (2002) concluded that it is unlikely incidental expe-

riences will foster educative experiences and that young children are

ready for organized, sequenced experiences embedded in specific

activities (e.g., reading children’s literature, music or art activities), play

(e.g., math games or physical activities), or projects. Frye et al. (2013)

further concluded that, in addition to embedded mathematics activities,

early childhood instruction should include daily, targeted mathematics

instruction (i.e., dedicated time for structured, mathematics-focused

activities). In brief, ensuring educative experience entails using manip-

ulatives with a purpose (e.g., clear goals), direction (e.g., scaffolding), and

feedback (including questions that prompt reflection such as “Why do

you think that makes sense?” or “Does everyone agree?”). As Brown,

McNeil, and Glenberg (2009, p. 161), noted, “Without appropriate

structure, learners may fail to discover the target concept.”

2. Active use. However, not all structured instruction is equally effective.

Chi (2009) hypothesized that constructive activities (which elicit

responses involving ideas that go beyond the information provided)

are more effective than active activities (physically doing something),

which in turn are more effective than passive activities (e.g., listening

or watching). Consider how this general framework applies to the case

of using concrete materials. Using manipulatives to actively involve chil-

dren in discovery learning—exploring a phenomenon, noticing patterns

or relations, and generalizing such regularities—is more effective than

either their unguided use or adult-directed use in advancing children’s

understanding (see Alfieri, Brooks, Aldrich, & Tenenbaum, 2011).

Prompting the imitation of a teacher-taught manipulative-based proce-

dure or simply watching a teacher model a procedure with manipulatives

may be meaningful to children and promote their successful adoption

and application of the procedure when it builds on existing conceptual
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understanding but when new conceptual insight is needed (Baroody,

Tiilikainen, & Tai, 2006).

The use of concrete experiences involving structured or guided discov-

ery has a number of advantages over direct instruction (see, e.g., Alfieri

et al., 2011; Ambrose, Baek, & Carpenter, 2003; DeCaro & Rittle-

Johnson, 2012; Fyfe, DeCaro, & Rittle-Johnson, 2014; Rittle-Johnson,

Fyfe, Loehr, & Miller, 2015; Schwartz, Chase, Chin, & Oppezzo, 2011;

Shafto, 2014). One is that first discovering concepts or inventing self-styled

solution strategies ismore likely to result in understanding a concretemodel

and, thus, greater learning or more flexible application of procedures than

first learning procedures. For instance, Thompson (1992) found that stu-

dents who had already learned teacher-taught renaming procedures did

not improve in computational accuracy after an intervention with either

base-ten blocks or virtual base-ten blocks (Blocksworld). Learning con-

cepts (e.g., via “meaningful” manipulatives) after learning a standard pro-

cedure is inconsistent with the moderate novelty principle for many

students because of the belief they already know how or what to do.

For a thoughtful discussion of how Froebel and Montessori artfully

used carefully designed protocols to guide the manipulatives-based dis-

covery of mathematical ideas, see Balfanz (1999) and Mix (2010). One

effective way of involving children in guided discovery learning is to

provide them materials that embody examples and nonexamples of a

concept so that they can discover for themselves the critical (defining)

attributes of the idea (Durkin & Rittle-Johnson, 2012; Rittle-

Johnson & Star, 2007, 2009, 2011; Schwartz et al., 2011). For example,

a game for helping preschoolers construct a concept of “three” (subitize

collections of three) is the game Is It Three?Children are shown different

examples of three and nonexamples of three (e.g., collections of 2 and 4)

and asked, “Is this three?” The variety of examples aid in helping

children in abstracting the defining property of three (a trio) by dis-

counting other properties such as shape, color, and size, and the non-

examples help define the boundaries of the concept (e.g., •••, but not

•• [fewer] or •••• [more], is “three”; Baroody, Lai, et al., 2006; Frye

et al., 2013). See Baroody and Coslick (1998) for a variety of example

lessons that employ examples and nonexamples. In sum, similar to

Martin and Schwartz (2005), Brown et al. (2009, p. 161) observed,

“educators need to find an appropriate balance between structure and

spontaneity,” as learners need some freedom to construct meaningful

knowledge for themselves.
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3. Reflective use. A particularly important aspect of the active use of concrete

materials and the construction of meaningful knowledge is thoughtful

reflection on the experience—mental, as well as physical, engagement

(Baroody, 1989; Sarama & Clements, 2009a). Indeed, consistent with

Chi’s (2009) distinction between active and constructive activities,

Piaget (1964) differentiated between a physical experience and a logical-

mathematical experience. The former “consists of acting upon objects

and drawing some knowledge about the objects (e.g., noticing that a

steel ball is heavier than a rubber ball of the same size; p. 11).

A logical-mathematical experience is knowledge that is drawn from

thinking about the actions on the objects. As an example, Piaget cited

the experience of a roughly 4-year-old child who counted a row of peb-

bles first in one direction, then in the opposite direction. Next the child

arranged the pebbles in a circle and counted them clockwise and then

counter clockwise. After experimenting with yet other arrangements,

the child discovered that, regardless of order or arrangement, counting

the collection (accurately) always had the same result. In effect, by

reflecting on his experience, the child discovered the order-irrelevance

and number-constancy principles applicable to any collection. In sum,

experiences with concrete materials are more likely to be educative if

children spontaneously reflect on their physical actions or are prompted

to do so by a teacher or peers asking them to explain or justify their

actions. Points 4 and 5 are especially important for prompting

reflective use.

4. Connecting to meaningful knowledge (e.g., capitalizing on familiar analogies).

To prompt thoughtful reflection, discovery learning or any form of

instruction needs to be meaningful, which requires carefully building

on what children know (Bruner, 1961; Fyfe, Rittle-Johnson, &

DeCaro, 2012). Encouraging children to use manipulatives to solve

mathematics problems with understanding needs to take into account

Piaget’s principle of assimilation and the moderate novelty principle,

and a key tool for doing so with learners of all ages is using meaningful

analogies. Building on existing and meaningful knowledge (e.g., a famil-

iar analogy) is particularly important for a guided discovery approach, as

it enables children to invent their own informal strategy for solving a

problem. Building on children’s existing knowledge and strategies is

the rationale for the Everyday Math program (Bell et al., 2004) and

can serve as basis for understanding and reinventing formal procedures

(see Baroody & Coslick, 1998). Doing so minimizes the need for
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students to memorize a teacher-taught problem-solving procedure for a

particular class of problems—an advantage that may be particularly

important for children with mathematical learning difficulties.

Consider the case of division. Primary-grade children often readily

devise a divvy-up strategy for fair-sharing problems (Amount$
number of shares¼ size of shares; see Table 4; Hiebert & Tonnessen,

1978; Kouba & Franklin, 1993). In contrast, Squire and Bryant (2002)

noted they often have difficulty solving more generic partitive problems

(Amount$number of groups¼ size of each group) and especially mea-

surement problems (Amount$ size of each group¼number of groups;

again see Table 4). Capitalizing on children’s everyday experience of fair

sharing can help them understand, compare, and solve more challenging

(i.e., generic partitive and measurement) division word problems. The

following guidelines outline how instruction can successfully foster

the use of manipulatives to informally solve division word problems:

Table 4 Types of Division Word Problems, Examples, and Children’s Informal Modeling
Strategy

Type of
Problema Example Word Problemb

Informal Strategy for Directly
Modeling the Meaning of the
Problem

Fair sharing How much candy did each of
three friends get if they shared
12 candies fairly?

Divvy-up:
• Count out 12 chips,
• Then distribute a chip to each
of three piles until all the chips
are gone, and

• Finally, count the chips in one
of the piles to determine the
answer.

Partitive Mandy has 12 candies. She puts 4
candies in each bag. How many
bags can she fill?

Modified fair
sharing

How many friends can share
12 candies fairly if each share is 3
candies?

Measure-out:
• Count out 12 chips,
• Then create piles of three until
all the chips are gone, and

• Finally, count the number of
piles to determine the answer.

Measurement Mandy has 3 bags of candies and
12 candies altogether. If there is
the same number of candies in
each bag, how many candies are
in each bag?

aFair-sharing problems are familiar examples of the more generic partitive class of division problems.
Modified fair-sharing problems are familiar examples of the more generic measurement class of division
problems.
bThe examples of the partitive and measurement problems are modeled after those illustrated at http://
www.math.niu.edu/courses/math402/packet/packet-4.pdf (examples that had been adapted from
Cognitively Guided Instruction, University of Wisconsin-Madison, 1992).
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• Introduce division with highly familiar fair-sharing problems. By

devising a divvying-up strategy with manipulatives themselves, chil-

dren will understand, own, and apply effectively apply the strategy.

• Relate less familiar generic partitive problems to fair sharing. For

instance, encourage a child who does not understand such problems

(e.g., does not spontaneously apply a divvy-up strategy) to translate

them into fair-sharing terms: The amount is analogous to knowing

the total number of items, the number of groups is comparable to the

number of people (the number of shares), and the unknown (the size

of each group) corresponds to the size of each share.

• Introduce the moderately novel modified fair-sharing problem

(Amount$ size of each share¼number of shares) to foster the inven-

tion of an informal measure-out strategy, see Table 4). Solving such

problems before introducing generic measurement problems will

provide a basis for understanding and solving the latter, more unfa-

miliar and challenging problems.

• Relate less familiar generic measurement problems to modified fair

sharing: Measurement division is analogous to knowing the total

amount and the size of each share and not knowing the number

of people with whom the total amount can be shared (number of

shares). This will help children recognize that their informal

measure-out strategy is applicable to such problems.

As illustrated in Fig. 8, the familiar and meaningful analogy of

(modified) fair sharing can also be invaluable in helping students

Informal concrete
model

Meaningful analogy Formal representation
(interpretation in terms of

a meaningful analogy)

Divvying-up Fair sharing
12 ÷ 4 = ?

(12 cookies shared fairly
among 4 yields

shares of what size? 
or

12 cookies divided into
shares of 4 is enough for

many shares?)
Measuring out Modified fair sharing

1/2 ÷ 1/3 = ?
(half a pizza will make

how many shares 
if each share is 1/3 of a

pizza in size?)

Fig. 8 Meaningful analogies as the bridge between informal concrete models of divi-
sion and formal symbolic representations of division.
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making sense of formal representations of division and bridging the

gap between written division expressions (e.g., 12$3 or 1/2$1/3)

or equations (e.g., 12$3¼ ? or 1/2$1/3¼ ?) and their informal

models or solution strategies. That is, the analogy provides the miss-

ing connection between formal representations of division and chil-

dren’s knowledge of how to use manipulatives to informally solve

division problems. With older elementary or even college-level stu-

dents, the modified fair-sharing analogy for measurement division

can provide the crucial basis for making sense of fraction division.

For instance, for many students, it is a mystery why 1/2$1/3 results

in the larger number 3/2 or 1–1/6 (not a smaller number as with the

division of whole numbers). The result makes sense if you consider

that 1/2 of pizza allows can be used to create one full share and a part

(1/6) of another share.

5. Explicit connections. Many manipulative-based activities do not include

corresponding written representations or procedures. Moreover, chil-

dren often do not spontaneously relate concrete models to abstract for-

malisms or vice versa (Resnick, 1982; Resnick & Omanson, 1987; Uttal

et al., 2013). Frequently, then, concrete materials need to be explicitly

linked to the abstract idea such material are intended to represent to

ensure thoughtful reflection (Brown et al., 2009; Fyfe et al., 2015). As

a first step, self-explanations may be particularly valuable in facilitating

learning both concepts and strategies because they prompt a pupil to

explicitly summarize new information and thus consciously reflect on

it (Berthold & Renkl, 2009; Matthews & Rittle-Johnson, 2009;

Rittle-Johnson, 2006; Rittle-Johnson et al., 2015; Star & Rittle-

Johnson, 2009). Consistent with the Common Core State Standards

Math Practices Standard 3 (http://www.corestandards.org/Math/

Practice/) encouraging children to share, justify, and compare their

informal strategies can also be valuable in fostering explicit reflection

and understanding, including gaps or inconsistencies in their thinking

(Baroody & Coslick, 1998; Battista, 2016; Piaget, 1928). So as to foster

connections with symbolic procedures, teachers can encourage children

to translate informal manipulative-based strategies into a written proce-

dure or vice versa (e.g., by asking them to evaluate a formal procedure in

terms of informal concepts and procedures). Finally, teachers can

explicitly summarize pupil’s discoveries and explanations and, as needed,

fill in gaps to ensure coherency. See Brown et al. (2009) for a discussion

of how artfully used gestures can assist in guiding children’s attention to
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the connection between concrete representations or action and abstract

ideas.

6. Extended use. Uttal (2003, p. 111) noted: “Several lines of research have

shown that for manipulatives to be effective, they must be used repeat-

edly for the same concept.” Children may need time using manipulatives

to discover regularities or otherwise make sense of their intended pur-

pose. Unfortunately, formal instruction often limits manipulative expo-

sure (Mix, 2010).

7. Multiple representations. Using multiple representations can serve to pro-

mote abstraction or generalization of a discovered regularity or deepen

conceptual understanding of a symbolic representation (Barmby et al.,

2009; Kaminski et al., 2009; McNeil et al., 2009; Moseley, 2005;

Steinbring, 1997). Moreover, translating formal symbolism into multiple

concrete embodiments (as well as the reverse) can further ensure multi-

ple connections and a deeper understanding of an idea (Baroody &

Coslick, 1998). However, research has shown that simply accessing mul-

tiple representations does not necessarily lead to improved understanding

(Ainsworth, 2006). Underscoring the importance of helping students

explicitly connects various representations of an idea, Seufert (2003,

p. 228) noted: “Learners must interconnect the external representations

and actively construct a coherent mental representation in order to ben-

efit from the complementing and constraining functions of multiple

representations.”

A concern with multiple models is that it reduces the exposure to any

one model and may confuse students (Mix, 2010; Uttal, 2003). For this

reason, Asian schools focus on a single concrete model (Stevenson &

Stigler, 1992). Concerns with the single-model approach, though, are

an overly local concept or inflexible strategy use. This may contribute

to an education that undermines pupils’ disposition, creativity, auton-

omy, and initiative (Zhao, 2014).

8. Purposeful use. Manipulatives may be particularly engaging when children

have a purpose of their own for using them or an adult creates a reason.

Math games may be a particularly useful way to create a real need to use

and reflect on the use of concrete experiences (for examples, see Baroody,

2016b; Baroody et al., in press; Baroody & Coslick, 1998; Clements &

Sarama, 2013). Dramatic play (e.g., a store scenario) also provides a struc-

tured yet purposeful way of creating a situation where children have the

opportunity to use concrete materials to explore, reflect on, and extend

mathematical concepts or apply mathematical skills.
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3.3.2 A Case in Point
Consider the research and recommendations by Kaminski and Sloutsky

(2013) regarding graph instruction for primary-grade pupils. Participants

were randomly assigned to an extraneous information condition, which

involved a combination of pictogram and bar graph (see Frame A in Fig.

9), or a no extraneous information condition, which involved a solid bar

graph (see Frame B in Fig. 9). All participants were taught how to read a

bar graph by relating the x-axis (time in weeks) to the y-axis (the number

of shoes). Children in the extraneous condition were posttested with a com-

bination of a misleading pictogram but accurate bar graph (see Frame C of

Fig. 9, and those in no extraneous condition were tested with a solid bar

graph (see Frame D of Fig. 9).e Whereas, the vast majority of kindergartners

and first graders in the extraneous condition counted the items in the mis-

leading pictogram and thus responded incorrectly, the vast majority of those

in the no extraneous condition used the taught procedure and responded

correctly. On a posttest task involving novel (pattern-filled) bar graphs

(see Frames E and F of Fig. 9), kindergarten and first graders in the extrane-

ous information condition used far less counting, and the majority

responded correctly. However, those in the no extraneous information con-

dition performed significantly better.

Kaminski and Sloutsky (2013) drew two conclusions:

1. If pictograms are used in primary instruction, then teachers should

explicitly direct children’s attention to the relation between the x-axis

and y-axis so that they do not have to rely on a counting strategy.

2. Although pictograms are often recommended as a scaffold for helping

young child make sense of bar graphs (e.g., Choate &Okey, 1981), such

scaffolding is not necessary for successfully learning how to read bar

graphs.

If a child repeatedly failed to see the connection between counting the items

in a pictogram and the corresponding value on the y-axis, then Kaminski and

Sloutsky’s (2013) first recommendation is consistent Point 5—help make

connections explicit. However, the second recommendation should be

treated with caution or even skepticism for several reasons. Consistent with

Point 4 (connect new instruction to prior knowledge), real graphs, picture

graphs, and pictograms (especially with grid) are recommended as scaffolds

e The condition-specific task for the Extraneous Information Condition of the Kaminski and Sloutsky

(2013) study (see Frame C of Fig. 9) is not ecologically valid, as teachers and textbook publishers (typ-

ically) do not use pictograms that depict an incorrect number of items.
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for meaningful introducing bar graphs, in part, because young children have

an informal, counting-based (discrete-quantity) view of number and bar

graphs entail a measurement (continuous-quantity) model of number. Some

primary-grade children, then, may need such scaffolding to understand a bar

graph and how to read it. Importantly, Kaminski and Sloutsky (2013) appar-

ently did not administer a delayed posttest to assess retention. There are
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Fig. 9 Graphs similar to those used by Kaminski and Sloutsky (2013) for training and
testing (based on their Figs. 1 and 2).
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several reasons to believe their intervention involving no extraneous infor-

mation would not have a lasting impact. Inconsistent with Points 2 and 3,

the instruction entailed a passive activity (e.g., listening or watching the

trainer read a graph) and an active activity (imitating the trainer’s procedure)

but not constructive activities (producing responses that entail ideas that go

beyond provided information) requiring reflection. Although the instruc-

tion refers to common objects and unit of time, it is not clear whether

the two variables were related in a meaningful way (e.g., by a familiar story

line; Point 4). As a trainer demonstrated a graph-reading procedure four

times and a participant practiced it only four times (in same session), the

intervention did not involve extended use (Point 6). Finally, the training

did not seem purposeful from a child’s perspective or particularly engaging

(Point 8). All in all, the instruction seems readily forgettable.

4. IS THERE EVIDENCE THAT CONCRETE EXPERIENCES
WORK?

Some empirical evidence indicates that, for example, concrete experi-

ences are useful in extending existing informal knowledge by providing

young children an opportunity to discover and apply a mathematical regular-

ity or devise and practice an informal strategy—(Boggan, Harper, &

Whitmire, 2010; Clements & Sarama, 2012) and that games (Bright,

Harvey, & Wheeler, 1985), including computer games (Baroody, Purpura,

Eiland, & Reid, 2015; Obersteiner, Reiss, & Ufer, 2013; Shin, Sutherland,

Norris, & Soloway, 2012) can be valuable in promoting mathematical

learning. However, in light of the preceding discussions on instructional

strategies for ensuring effective use of concrete experiences and Dewey’s

(1963) interaction principle, it should not be surprising that research on the

effectiveness of concrete experiences is mixed (see, e.g., reviews by Mix,

2010; Uttal, 2003). In explaining the mixed results of Thompson’s (1992)

use of the Blocks Microworld program and research on the effectiveness

of manipulatives in general, Mix (2010) concluded that whether a model

might or might not work depends on such factors as how manipulatives

are used, the outcome measure, and the characteristics of the learner.

For instance, Walker, Mickes, Bajic, Nailon, and Rickard (2013) eval-

uated the relative efficacy of using a conceptual approach (fact triangles)

and a drill approach (answer-production [AP] training) to promote fluency

with subtraction combinations with grade 1–6 students. Fact triangles
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(e.g., see Fig. 10) are widely used to help children see that subtraction is

related to addition and that known sums can be used to reason out unknown

differences (e.g., if 3+4¼7, then 7 – 3¼4). Walker et al. (2013) found that

AP training was significantly more efficacious in promoting subtraction flu-

ency with practiced combinations than the fact-triangle intervention but

that neither approach promoted transfer of fluency to unpracticed subtrac-

tion combinations. These researchers concluded that fact triangles “are not

an effective vehicle for fluency training or for establishing flexibly applicable

arithmetic skill” and curricula should “deemphasize fact-triangle exercises in

favor of more AP training” (p. 30).

However, the fact-triangle intervention in theWalker et al. (2013) study

may have failed because of the ineffective manner in which the training was

implemented. The model used was (a) perhaps only semiactive (Section 3.3,

Point 2), (b) not designed to prompt reflection (Point 3), (c) not particularly

meaningful (Point 4), (d) without explicit connections between procedures

and concepts (Point 5), (e) relatively short in duration (Point 6), (f ) depen-

dent on a single (not multiple) representations (Point 7), and (g) not pur-

poseful and engaging (Point 8). In regard to Point 4, their fact-triangle

training involved only two of seven steps in a HLT for fostering the

meaningful memorization of subtraction combinations (Baroody, 2016a).

In contrast, virtual concrete experiences designed to be consistent with

Points 2–4 and 6–8 were significantly efficacious in promoting fluency with

unpracticed subtraction combination—transfer, which is a primary goal of

education (Baroody, Purpura, Eiland, & Reid, 2014; Baroody, Purpura,

Eiland, Reid, & Paliwal, 2016). Moreover, although Walker et al. did

attempt to gauge transfer, they did not measure which method was more

effective in fostering the conceptual understanding that addition and

Fig. 10 Example of a fact triangles using 3–4–7.
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subtraction are related operations. Finally, aside from a fluency pretest, these

researchers did assess internal factors such as developmental readiness to ben-

efit from fact-triangle instruction.

Mix (2010) concluded that manipulatives “play different roles in differ-

ent situations” (p. 41) and the key question is not “do such educational tools

work” but “do these materials used in this particular way activate this par-

ticular mechanism in this particular learner?”Moreover, citing Ginsburg and

Golbeck (2004), she noted, “almost no research has addressed how or why

these materials might help” (p. 41). To address such a question effectively,

researchers need to spell out the role manipulatives are presumed to play—a

factor that dictates the outcome measures. Importantly, both the theoretical

model and intervention effort need to take into account Dewey’s (1963)

principle of interaction—how external factors are intended to mesh with

internal factors. Evaluations of manipulatives involving interventions that

violate this principle (e.g., attempt to impose a manipulative procedure

via direct instruction quickly) confound instructional approaches with the

potential value of the manipulative in a learning environment that honors

the principle (e.g., encourages a child to use their existing knowledge to

reflect on how to use the manipulative). Furthermore, a fair evaluation of

manipulatives should include assessing the developmental readiness of par-

ticipants along a HLT. To date, such internal factors have been largely over-

looked when researchers construct hypotheses regarding why and how

manipulatives work and evaluate the impact of manipulatives.

5. CONCLUSIONS

Both educators and researchers need to take into account Dewey’s

(1963) principle of interaction when considering the use of concrete expe-

riences. The main implication of the interaction perspective is that the

choice of concrete experience depends on internal or psychological factors

(e.g., a child’s developmental level and interests) as well as external factors

(e.g., the goal of instruction, the nature of the instructional activity). Indeed,

ensuring an educative experience requires that the latter mesh with the for-

mer, including a child’s developmental level.

What is “concrete” may depend on whether the goal is sensory-

concrete, integrated-concrete, or abstract knowledge. “Students may

require physically concrete materials to build meaning [sensory-concrete

knowledge] initially” (Sarama & Clements, 2009a, p. 146). However, a

priori, there is no reason to believe that virtual representations could not
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provide the sensory input needed to construct mathematical ideas initially.

Whether virtual experiences can be designed to promote sensory-concrete

knowledge as effectively as (or even more so than) physical materials, is

an open and important question. Until such evidence is available, results

showing that virtual manipulatives are more effective than physical manip-

ulatives (e.g., Thompson, 1992) are not necessarily inconsistent with

perceptual-motor to mental actions perspective (cf. Mix, 2010), if the

goal is integrated or abstract knowledge. For these goals, concrete is

what is meaningful—what can be connected to other familiar ideas or

situations—not sensory input from physical objects or movements

(Sarama & Clements, 2009a).

A worthwhile concrete experience or activity is educative (e.g., promotes

the next level of development in a HLT or lays the groundwork for

more advanced levels). “Good [concrete experiences or] manipulatives

are those that aid students in building, strengthening, and connecting various

representations of mathematical ideas” (Sarama & Clements, 2009a, p. 146).

Their good use could benefit from a systematically planned approach to

assessment and instruction based on HLTs. Such an approach can help

ensure that external mesh with internal factors by identifying a child’s level

of development and the goal, suggested activities for achieving this goal, and

the assessment for gauging whether the goal has been achieved. Although

largely overlooked by researchers, an educative experience may also include

activities that foster a positive disposition for further learning or problem-

solving competence.

The effective use of concrete experiences and manipulatives—whether

they work or not—depends on what is arguably the most important and too

often overlooked factor in learning, namely internal factors (e.g., a child’s

developmental level or interests; Fyfe et al., 2012; McNeil & Jarvin,

2007). Key questions both educators and researchers need to ask include:

Is the concrete experience or manipulative consistent with the principle

of assimilation (e.g., does it fit a child’s existing knowledge and is thus mean-

ingful). In particular, does instruction tap a conceptual schema (e.g., a famil-

iar and meaningful analogy) by which children can connect a formal

representation or process to their existing informal concrete model or strat-

egy? Is it moderately novel and purposeful and, thus, engaging to children? Is

the experience designed to prompt reflection, discovery, or other mental

actions, or does it merely entail passively watching and modeling an

adult-imposed strategy? Indeed, whether a manipulative is meaningful,

engaging, and thought provoking may be appreciably more important
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factors than its physical appearance (e.g., whether gaudy or sterile). Consid-

ering such questions will reduce the chances of concluding that a concrete

activity or material is ineffective or attributing its failed use to a child’s or

children’s cognitive limitations when such activities and materials are not

meaningful, engaging, or thought provoking.

Taking into account internal factors and how they mesh with external

ones may mean using an approach Bruner (1960) called a “spiral

curriculum.” It may be developmentally inappropriate to start with a model

that most closely aligns with an ultimate goal (a formal representation).

Instead, increasing abstract and aligned manipulatives may need to be grad-

ually introduced in a stepwise fashion. More specifically, instruction may

need to start with a concrete model that is not only partially aligned with

the ultimate goal of instruction or desired mental representation but is

aligned with a child’s developmental level. Then a series of increasingly less

concrete models can be used to revisit the idea as the child achieves more

advanced levels of development. Finally, when the child is developmentally

ready, a relatively abstract model that precisely aligns with the ultimate goal

of instruction or desired mental representation can be introduced.

For example, an abacus embodies both base-ten and place-value con-

cepts and is a relatively precise concrete model of multidigit numbers, addi-

tion, and subtraction. As such, the model meets the criterion for a useful

model according to cognitive alignment perspective, especially if related

to written representations. However, an abacus corresponds to the most

abstract model (Frame D) in Fig. 6. As such, it may not a good tool for intro-

ducing a base-ten/place-value meaning of multidigit numbers, whereas

bundling 10 items to create a group of ten (a proportional model that entails

the physical action of grouping but not place value) may be more concrete

(align more closely to children’s informal counting-based view of number).

Later, though, the abacus (a nonproportional grouping and place-value

model)—which aligns more closely with place-value, base-ten meaning

of multidigit written numbers—may well be useful.

Clearly, though, the spiral curriculum hypothesis of concrete experi-

ence/manipulative use—like so many aspects of the educational use of these

tools—needs rigorous empirical verification. Much more research is needed

to develop or refine HLTs that guide the effective use of such educational

tools. The promise is that concrete experiences can be a valuable means of

discovering and generalizing mathematical regularities and extending infor-

mal or formal knowledge (for learners of all ages). Such experiences may be a

particularly invaluable means of making sense of formal mathematics
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instruction—of relating the unfamiliar, context-free ideas of school mathe-

matics to familiar, personally meaningful contexts.
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